Splice site skipping in polyomavirus late pre-mRNA processing.

نویسندگان

  • Y Luo
  • G G Carmichael
چکیده

Polyomavirus late nuclear primary transcripts contain tandem repeats of the late strand of the viral genome, as a result of inefficient transcription termination and polyadenylation. Pre-mRNA processing involves the splicing of short noncoding late leader exons to each other (removing genome-length introns) and the splicing of the last leader to a coding body exon (such as for the major virion structural protein, VP1). As a result, cytoplasmic mRNAs contain 1 to 12 tandem leader exons at their 5' ends that are followed by a single coding exon. To understand more about how polyomavirus exons are spliced together, we studied a double-genome construct consisting of two tandem but nonidentical polyomavirus late transcription units. The alternating leader exons are distinguishable from one another but retain identical flanking RNA-processing signals, as for the alternating VP1 exons. We transfected this construct and derivatives of it into mouse cells and determined which leader exons are spliced to which others and which VP1 exons are utilized. Results showed that leader exons are almost never skipped during splicing and are spliced sequentially to one another. On the other hand, VP1 exons were often skipped, with the VP1 exon closest to the polyadenylation site splicing to the nearest upstream leader exon. Splice site replacement experiments showed that VP1 exon skipping is not due to a relative weakness of its 3' splice site or to any sequence upstream of the VP1 3' splice site. Exon skipping is also not the result of sequences within the VP1 exon. Rather, VP1 3' splice site skipping can be eliminated by replacing the inefficient late polyadenylation signal with an efficient one, or by inserting a 5' splice site between the VP1 3' splice site and the late polyadenylation site. Thus, sequences that compose the distal border of the VP1 exon can influence usage of the upstream 3' splice site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splice site choice in a complex transcription unit containing multiple inefficient polyadenylation signals.

The relationship between polyadenylation and splicing was investigated in a model system consisting of two tandem but nonidentical polyomavirus late transcription units. This model system exploits the polyomavirus late transcription termination and polyadenylation signals, which are sufficiently weak to allow the production of many multigenome-length primary transcripts with repeating introns, ...

متن کامل

Modulation of exon skipping by high-affinity hnRNP A1-binding sites and by intron elements that repress splice site utilization.

The RNA-binding protein hnRNP A1 is a splicing regulator produced by exclusion of alternative exon 7B from the A1 pre-mRNA. Each intron flanking exon 7B contains a high-affinity A1-binding site. The A1-binding elements promote exon skipping in vivo, activate distal 5' splice site selection in vitro and improve the responsiveness of pre-mRNAs to increases in the concentration of A1. Whereas the ...

متن کامل

Splicing inhibition of U2AF65 leads to alternative exon skipping.

U2 snRNP auxiliary factor 65 kDa (U2AF(65)) is a general splicing factor that contacts polypyrimidine (Py) tract and promotes prespliceosome assembly. In this report, we show that U2AF(65) stimulates alternative exon skipping in spinal muscular atrophy (SMA)-related survival motor neuron (SMN) pre-mRNA. A stronger 5' splice-site mutation of alternative exon abolishes the stimulatory effects of ...

متن کامل

Early and late pre-mRNA processing of budgerigar fledgling disease virus 1: identification of viral RNA 5' and 3' ends and internal splice junctions.

Budgerigar fledgling disease virus 1 (BFDV-1) is the first avian polyomavirus to be identified, and it possesses uncommon structural and biological properties. Here we present an analysis of the processed viral RNAs in infected chicken embryo fibroblast cells. Two early and 18 late BFDV-1 mRNAs were defined according to their 5' ends and internal splice patterns. In the early region of the geno...

متن کامل

Intron self-complementarity enforces exon inclusion in a yeast pre-mRNA.

Skipping of internal exons during removal of introns from pre-mRNA must be avoided for proper expression of most eukaryotic genes. Despite significant understanding of the mechanics of intron removal, mechanisms that ensure inclusion of internal exons in multi-intron pre-mRNAs remain mysterious. Using a natural two-intron yeast gene, we have identified distinct RNA-RNA complementarities within ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 65 12  شماره 

صفحات  -

تاریخ انتشار 1991